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Abstract The parameters in many environmental models are obtained by fitting as closely as possible the model oulputs (o the
measured values. The fitiing is often carried out using automatic optimisation techniques. Genetic algorithms are giobally
oriented, searching over the entire parameter space, and are therefore suitable for solving optimisation problems where the objective
function responses contain multiple optima and other frregularities, This paper describes the application of a genetic algorithm to
calibrate a ten-parameter conceptual daily rainfall-runoff model {modified version of HYDROLOG). The calibration results
presented for two temperate catchments close to the central coast of New South Wales (castern Australia) highlight the usefulness
and limitations of the genetic algorithm. The results indicate that the genetic algorithm is not always robust and cannot always
overcome the problems associated with function eptimisation. However, it searches more globally compared to most other
optimisation technigues and does not require the specification of a starting set of parameter values.

1. INTRODUCTION

Many environmenial models have a large number of
parameters. Ideally these parameters should be assigned
valaues from direct or indirect field measurements, but in
many cases this is not possible. Instead, an inverse problem
is solved in which the parameters are calibrated by fitting as
closely as possible the model output to the observed. An
objective function is constructed as a measure of how close
the model output is to the observed, and a search is conducted
to find the parameter set which minimises the value of the
objective function,

Models with many parameters cannot be easily optimised by
standard nonlinear function optimisation techniques. The
search can often be fooled into declaring convergence far short
of the true optimum because of high dimensionality and
irregularities contained in the objective function response
such as multiple optima, unsmoothness, discontinuity,
elongated ridges and flat plateaus. Some of these difficulties
can be overcome by the recently developed genetic algorithms
which approach the optimisation problem very differently.

Genetic algorithms are search procedures bascd on natural
sefection and genetics, combining an artificial survival of the
fittest with genetic operators abstracted from nature (see
Holland, 1973; and Goldberg, 1989). Genetic algorithms
differ from other search techniques in that they search among
a population of points and use probabilistic rather than
deterministic transition rules. As a result, genetic algorithms
search more globaily.

This paper describes a genetic algorithm and its application to
calibrating a moderately complex conceptual daily rainfail-
runoff model with ten parameters (a modified version of
HYDROLOG). The model calibration is carried out by first
applying a genetic algorithm with 5000 objective function
evaluations foilowed by a fine tuning using a univariant
search technique. Resuits of the calibration on two
catchments close 1o the central coast of New South Wales

{eastern Australia) are presented to highlight the usefulness
and limitations of the genetic algorithm.

2. A GENETIC ALGORITHM

Given a function f=flx;, X, ..., x5} subject to ¢; S x; £ by,
i=1,2, .. a, the aim is to find the set of parameier values
which gives & minimum value of /. Genetic algorithms
work with the coding of the parameters. A method of
parameter coding that has often been used is the binary
coding, An [-bit binary variable is used to represent one
parameter x;. The integer of the decoded binary variable
ranges from 0 to 20 - 1 and are mapped lingarly to the
parameter range [a;, by]. Connecting the codings of all
parameters forms the coding of the overall parameter set. Tor
example, if there are ten parameters and cach parameter is
represented by seven binary bits, a point in the search space
is then represented by 70 bits.

The genetic algorithm used here has the following steps.

1. Locate m points randomly in the search space. Each
point corresponds to one set of parameter values.
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. Find the function value for each point.

3. Rank the points so that their function values are in
descending order.

4. Assign a probability value p; to each point giving higher
probability to the point of lower (better) function value.
The worst point after ranking is j=1, and its probability
value p; will be the smallest. The best point is j=m, and
its probability value p, will be the largest. The
probability values for other points are linearly interpolated
a3
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The sum of probability values for all points is equal to
unity and the average of probabitity values for all points
is 1/m. A valuc of C/im is assigned to py, so that the
probability value for the best peoint is C times the
average, where C > 1. The corresponding probability
value for the worst point p; is then (2 - C¥/mi. To cosure
that all probability values are non-negative, C should be
less than or equal to 2.

5. Select two points A and 8 from these m points at random
according to the probability distribution, ps, j= 1, 2, ..,
m. Having assigned higher probabilities to better points
in the last step, the better points have better chances to be
selected.
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. Select two bit positions, k; and &, along the overall
coding of the parameter set at random, giving each bit
position the same chance of being selected (if &; > &,
their values are interchanged).

7. Form a new point by taking the values of the bits from
kytoky - 1 of the coding for point A and values of the
bits from k; to the end and from 1 to &, - 1 of the coding
for point B,

For example, if the coding for point A is 110101100100

and the coding for point B is 1010101110601

and by =5 and &y = 11,

the coding for the new point will be 101003100101

8. Occasionally change some of the bits of the newly formed
point. A bit value ¢ will become 1 and vice versa. This
occurs t0 each bit only at a very small probability of

Pmutation:

9. Repeal sleps 5-8 m times so that m new points are
produced. The original m points are then replaced by the
new ones, forming a ncw base for further search.

10.Repeat steps 2-9. The best point found so far is always
recorded, and in step 2 if the newly generated m points are
alt inferior to the best point found so far, the fatter is re-
inscried into the population by replacing randomiy one of
the m points. Termination of the search is made by
specifying a total number of objective function
evaluations.

Steps 5 to 7 form the core of the method. Better points have
better chances to be chosen to form new points. This is an
analogy to the survival of the fittest in the theory of natuoral
selection. The better performing individuals produce more
offspring. A new point is formed by taking different blocks
of bits from the codings of the two original points. This is
an analogy to crossover in the theory of genetics. An
offspring takes some blocks of genes from one parent and
some from the other. Fit parents are likely to produce fit
offspring. The combination of selection and reproduction
improves the performance level of the population in the
evolution process. The occasional change of bit values in
step 8 is an analogy to mutation in the theory of genetics
which provides a small probability for background variation.

In summary, unlike standard search techniques, genetic
algorithms search among a population of points, work with a
coding of the parameter set and use probabilistic transition

rules. A population of m points are chosen initially at
random in the search space. The objective function values are
calculated at all points and compared. From these m points,
two points are selected randomly, giving hetier polints higher
chances, The selected two points are subsequently used o
generate a new point in a certain random manner with
occasionally added random disturbance. This is repeated until
m new points are generated. The generated population of
points are expected to be more concentrated in the vicinity of
optimum than the criginal points. The new populaton of
points are then used to generate another population of points
and so on, yielding points increasingly closer (o the
optimum.

The genetic algorithm used here is only one of the variants of
the methed. For example, the selection probabilities can be
related directly to the function values instead of the ranking
method used here. Further details on genetic algorithms can
be found in Holland (1975), De Jone (1975} and Goldberg
(1989). Nevertheless, Whitely (1989) and Wang {1991 have
shown that the search is more robust by employing the
ranking method.

For this study, a population size of m = 100 is used with 50
population generations {therefore totalling 3000 objective
function evaluations) in each run. Bach parameter range is
represented by a I = 7 bit binary therefore discretising the
parameter to 128 values. Values of C = 1.5 and poynarion =
0.01 are used.

3. CONCEPTUAL RAINFALL-RUNOFF
MODELLING AND FUNCTIONM
OPTIMISATION

Conceptual rainfall-runoff models are used to estimate runofl
from rainfall and other climate data (usually used to calculate
potential evapotranspiration). The simpler models typically
have three or four parameters while the more complex ones
can have more than 25 parameters. The parameter values are
usualty optimised to provide a good fit between the simulated
and recorded flows. Key papers on function optimisation
methods for calibrating rainfall-runoft models include Thbit
and O’ Donnell {1971), Johnston and Piigrim (1976}, Pickup
{1977y, Kuczera (1983); Sorooshian and Gupta (1983). Gupta
and Scrooshian (1985), Hendrickson et al. (1988), Brazil
(1989) and Duan et al, {1992, 1994,

The standard nonlinear function optimisation techniques often
behave erratically when used for calibrating rainfall-runoff
models. These techniques are often fooled into declaring
convergence far short of the true optimum because of high
dimensionality and irreguiarities contained in the ohjective
function response.

Genetic algorithms use a very different approach to most of
these techniques. They can be more reliable because they
search more globally. Wang (1991, 1993} demonstraied the
uscfulness of a genetic algorithm in calibrating the
XKinanjiang Model (Zhao ot al., 1989; and Zhao, 1992) on
several catchments in United Kingdom, Japan and Australia.

The daily conceptual model used here is a modified version of
HYDROLOG. Like all conceptual rainfall-runoff models,
HYDROLOG represents the catchment as a number of
interconnected storages, with mathematical functions used to
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describe the movement of water into, between, and out of

them. It attempts (o represent the physical processes by
using empirical equations and 'effective’ parameters to
describe the processes. Various versions of HYDROLOG

have been used extensively to estimate runoff for a range of

purposes, particularly in Australia {see Chiew and McMahon,
1994 and Chiew et al., 1995).

The version wsed here has 10 parameters. The model
structure and the equations representing the processes are
illustrated in Figure 1, with the model parameters highlighted
in bold. A detailed description of HYDROLOG can be found
in Porter and MeMahon (1976} and Chiew and McMahon
(1994,
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Figure I Structure of the modified version of the
conceptual daily rainfall-runoff model, HYDROLOG

4. MODEL CALIBRATIONM AND RESULTS

The genetic algorithm is first used to calibrate HYDROLOG
to minimise the value of the objective function, OB/, defined
here as the sum of squares of the differences between the daily
simulated and recorded flows. When the streamflow volume
is expressed in mm depth of water over the catchment area,
the objective function has a unit of mmZ.

Ten calibration runs are made with different seeds for the
random number generator resuiting in different starting
population of points and different random numbers used in
the search operations. Results from the ten runs can provide
an indication of the robustness of the genetic algorithm. The
search is limited to 5000 objective function evaluations. The
search space is defined by the range of parameter values given
in Table 1.

After the 5000 objective function evaluations. a univariani
(pattern) search technique {sec Hockes and Jeeves, 1961 and
Monro, 1971} is used (starting from the set of parameter
values giving the fowest objective function value from the
genetic algorithm) to improve the value of the objective
function. The rationale here is that the genetic algorithm
explores the large search space to locate an approximate
optimum and the standard search technique then fine tunes
locally. The objective function values obtained by using the
combination of the genetic algorithm and the univariant
search technigque are also compared with those chiained by
using only the univariant search technigque,

The calibration results for two catchments close to the central
coast of Mew South Wales are shown in Tables 2 and 3 1o
highlight the usefulness and limitations of the genetic
algorithm. Table 2 shows the results for Wollombi Brook
catchment close to Bulga. [t has a drainage area of 1580 km?
and is covered by forest and grass. It hag a temperate climaie
with an average anoual rainfall of 700 mm, 100 mm of
which becomes runcfl. Five years of data {1963 - 1967} are
used. The first 50 days are used as o warming period to
initialise the model stores,

Tuble 3 shows the calibration resulis for Allyn River
catchment at Halton. It has a drainage area of 205 km? and is
covered by eucalyptus and grasses. The average annual
rainfall is 1200 mm, 3530 mm of which becomes runoff.
Eight years of data (1977 - 1984) are used. The first year is
used as a warming period to be consistent with that used in
another study on the catchment,

5. DISCUSSION OF RESULTS

The coeflicient of efficiency, £, in all the calibration runs for
the two catchments is almost 0.9, The cocfficient of
efficiency is defined as

F, - OBJ
Fo

]

where, Fy = 2 (REC; - RECY

im]

REC; is daily recorded runoff and REC is mean daily recorded
runotf.

The coefficient of efficiency expresses the proportion of
variance of the recorded flows that can be accounted for by the
model {Nash and Sutcliffe, 1970) and provides a direct
measure of the ability of the mode! o reproduce the recorded
flows with £ = 1.0 indicating that all the simuolated {lows are
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Table 1 Ranges of HYDROLOG parameter values defining the search space

INSC COEFF 8Q SUB CRAK SMSC EM POWER cO K1
{mm} (mm) {mm} {rnm)
Lower limit | 20 0.1 4] 1] 20 35 ( 0.1 4]
Upper limit 5 300 g I 2 400 20 1 100 0.5
Table 2 Results of calibration of HYDROLOG for Wollombi Brook catchment
1 2 3 4 3 6 7 8 9 10
INSC {mm) 2.26 1.80 2.08 1.84 1.73 2.54 2.35 1.72 273 2.08
COEFF (mm) 193 162 171 177 161 177 206 164 180 223
50 .88 6.63 6.93 6,20 5.10 7.71 6,08 5,12 7.48 6.82
SUB 045 013 0372 0G0 QLG .000 L0326 000 000 067
CRAK 987 1.G7 1.09 937 823 1.34 879 806 1.35 910
SMSC (mm) 398 400 400 374 3009 400 336 314 383 367
EM {mm) 10.9 13.9 131 11.5 0.8 13,3 8.84 10.5 12,4 .90
POWER 000 039 055 KiER] 48 265 081 053 L3355 Q080
CO 10.3 7.589 7.12 7.149 7.51 1.67 6,22 7.34 B87 0.7
K1 160 177 163 173 J1R2 59 150 176 167 L1134
OBJ ('mm'z} 731 734 734 736 740 743 736 740 747 732
(754} (8023 (7943 (774) (822) (855) (788) (796} {768} (819

Each run consist of a search using the genetic algorithm with 5000 objective function evaluations followed by fine tuning
using a univariant search, The OBJ values in brackets are objective function values reached using only the genetic algorithm,

Table 3 Results of calibration of HYDROLOG for Allyn River caichment

i 2 3 4 3 6 7 8 9 10
INSC {mm} 5.06 1.00 1.00 5.60 5.60 5.00 1.00 2.01 P81 5.00
COEFF (mm) 291 207 214 244 234 55 96.3 291 300 300
50 349 2.90 3.43 077 162 434 2.96 473 234 508
SUB 732 103 102 729 F46 748 60 904 800 752
CRAK 1.98 279 264 1.90 1.93 1.91 463 2.06 2.00 2.08
SMSC (mm) 52.6 393 400 30.0 49,1 48.2 320 127 128 94 .4
EM (mm) 5.77 5.43 65.83 5.00 5.00 5.00 i5.3 15.1 17.6 5.00
POWER .000 842 844 000 Qoo 000 837 000 000 000
CO 100 100 1048 100 100 100 100 106 100 108
Kl 080 .195 262 067 .065 063 237 036 040 574
OBIJ {tnm*} 12100 14800 14700 12600 12000 12600 14900 1400¢ 14000 13200
(13600) | (168007 | (15200) 1 (14600) | (14100) { (157000 § (15000) { (13200) { (16000) (147003

Hach run consist of a search using the genetic algorithm with 5000 objective function evaluations followed by fine tuning
using a univariant search. The OBJ vaiues in brackets are objective function vajues reached using only the genetic aigorithm.

the same as the recorded flows, Like the objective Tunction,
it is biased towards assessing the simulation of higher flows.
The high vatues of £ indicate that all calibration runs resulted
in satisfactory simulations of daily runoff, particularly the
higher flows.

Inspection of the parameter values in Table 2 for the
Woilombi Brook catchment shows that runs 6 and 9 reached
the vicinity of ome optimum while the other runs reached a
different and slightly better optimum in the parameler space.
However, the lowest and highest objective function values
differ by only two percent. In the comtext of rainfall-runoff
modelling and in estimating daily flows, this difference is

negligible. From the optimisation peint of view, it is
difficult for any search technigue to discriminate the two
optima without an exhaustive search. Further extensive
search has not revealed any substantially better point
indicating that the objective function vaiues achieved in the
ten runs are close or equal to the global minimum.

It may be noted from Table 2 that the fine tuning using the
univariant optimisation technique improved the value of the
objective function obtained using only the genetic algorithm
by up to 15%.
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The model calibration was also carried out using only the
univariant optimisation technique. This resulted in an
objective function value of 736 mm?, which is practically the
same as the values obtained using the genetic algorithm with
fine tuning. It should be noted, however, that calibration
asing the univariant technigque (and most noalinear
optimisation methods) are very dependent on the starting set
of parameter values, and a poor choice of starting values can
lead to poor model calibration due (o the problems discussed
earlier. The starting point used in this case has been chosen
based on the authors' exiensive experience with the
HYDROLOG model. On the other hand, the genetic
algorithm searches over the entire parameter space, and the
user does not need to specify starting parameter values.

Unlike the Wollombi Brook catchiment, the calibration runs
for Allyn River catchment reached several different optima.
Table 3 indicates that runs i, 4, 3 and 6 reached the vicinity
of one optimum and gave the best model calibration, while
runs 2 and 3 reached another optimum and gave the poorest
calibration. Runs 8 and 9 reached the vicinity of yet another
optimum while runs 7 and 10 reached ancther two different
optima. The lowest and highest objective Tunction values
differ by almost 25%.

The significantly different optima obtained with the ten
calibration runs for the Aliyn River catchment indicate that
the genetic algorithm is not always robust.  Although the
genetic algorithm searches more globally and therefore has
less chance of being trapped in local optima compared to
most nonlinear optimisation techniques, it cannot overcome
all the problems associated with function optimisation.

It may be noted from Table 3 that the fine tuning using the
univariant optimisation technique improved the value of the
ohjective function obtained using ouly the genetic algorithm
by up to 30%.

The mode] calibration using only the univariant optimisation
technique resulted in an objective function value of 15000
mm?. This value is higher than those obtained from all the
ten runs using the genetic algorithm with fine tuning (more
than 25% higher in four cases), There is therefore merit in
using the genetic algorithm to search globally for parameter
sets close to the optimum.

6. SUMMARY AND CONCLUSIONS

A genetic algorithm is applied to calibrate a ten-parameter
conceptual daily rainfali-tunoft mode! (moditied version of
HYDROLOG), The calibration resuits for two temperate

catchments close to the central coast of New South Wales are
presented.

Calibrations on the Wollombi Brook catchment Indicate that
the genetic algorithm is robust with the ten calibration rans
giving practically the same objective function values.
However, the ten calibration runs on the Allyn River
catchment resulted in significantly ditferent optima,
suggesting that the genctic aigorithm cannot always
overcome the problems associated with function
oplimisation. MNevertheless, all the calibration runs with the
genetic algorithm led to lower objeciive function values
compared o the value obtained using only the univariant
search technique. In addition, unlike most standard nonlinear

optimisation methods where the calibration results are
dependent on the starting set of parameter values, the genetic
algorithm does not require specification of starting parameter
values,

In summary, genetic algorithms scarch globally over the
entire parameler space and are therefore suited to solving
optimisation problems where the objective function
responses contain muitiple optima and other irregularities.
They are useful in calibrating environmental models,
particularly when a standard optimisation technique is further
used o fine tune around the optimuem located by the genetic
algorithm.
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